Rabu, 30 Maret 2016

Sejarah Dan Perkembangan Dari 1G Sampai 4G



A.     Jaringan 1G  (Generasi Pertama)
Teknologi 1G adalah generasi pertama yang mulai dikenalkan pada 1970-an, Teknologi seluler 1G ini bekerja menggunakan transmisi sinyal analog yang cuma mampu untuk melakukan panggilan telepon. Teknologi 1G itu mempunyai peran yang cukup besar untuk membantu pertumbuhan pasar ponsel.
Diawali pada tahun 1980, ketika AMPS di Amerika bekerjasama dengan TACS dan NMT di Eropa membuat terobosan di teknologi jaringan. 1G ini adalah standar baru dari teknologi jaringan. Jaman dimana campur tangan manusia sudah tidak terlalu dibutuhkan semuanya benar benar sudah otomatis dan dengan bentuk yang kecil tentunya dengan adanya teknologi 1G yang merupakan generasi pertama. Selain itu, Teknologi 1G merupakan teknologi yang masih menggunakan nirkable analog sebagai teknologinya. Pada generasi pertama ini, ponsel (telepon seluler) masih disebut ponsel, belum disebut ponsel pintar atau smartphone. Telepon pada generasi pertama ini masih sangat sederhana, karena fiturnya pun masih sebatas untuk mengirim pesan singkat dan menelpon saja dalam berkomunkasi. Adapun contoh teknologi 1G adalah NMT (Nordic Mobile Telephone) dan AMPS (Analog Mobile Phone System). Karena ini adalah ponsel generasi pertama, mereka membuatnya sangat serius. Mereka membuat ponsel yang kuat dan handal yang akhirnya tersebar ke seluruh dunia.

B.     2G (Generasi Kedua)
Di awal 90’an akhirnya untuk pertama kalinya muncul teknologi jaringan seluler digital, yang hampir bisa dipastikan memilki banyak kelebihan daripada teknologi terdahulunya yaitu 1G, keunggulan yang terdapat pada 2G adalah suara yang lebih jernih, keamanan lebih terjaga dengan kapasitas yang lebih besar. GSM muncul terlebih dahulu di Eropa sementara di Amerika sendiri mengandalkan D-AMPS dan Quallcomm CDMA pertama mereka . Kedua system CDMA dan GSM mewakili generasi kedua 2G dari teknologi jaringan nirkabel.
Generasi kedua memilki fitur CSD yang membuat transfer data menjadi lebih cepat. Sekitar 14.4 kbps, anda juga dapat mengirimkan pesan teks, tapi fitur CSD ini memakan banyak biaya yang akan menyebabkan tagihan bulanan anda membengkak.
Selain digunakan untuk komunikasi suara, juga bisa untuk SMS (Short Message Service) adalah layanan dua arah untuk mengirim pesan pendek sebanyak 160 karakter). Mendukung voice mail, call waiting, dan transfer data dengan kecepatan maksimal 9.600 bps (bit per second). Kecepatan sebesar itu cukup untuk mengirim SMS, download gambar, atau ringtone MIDI . Kelebihan 2G dibanding 1G selain layanan yang lebih baik, dari segi kapasitas juga lebih besar.
Suara yang dihasilkan menjadi lebih jernih, karena berbasis digital, maka sebelum dikirim sinyal suara analog diubah menjadi sinyal digital. Perubahan ini memungkinkan dapat diperbaikinya kerusakan sinyal suara akibat gangguan noise atau interferensi frekuensi lain. Perbaikan dilakukan dipenerima, kemudian dikembalikan lagi dalam bentuk sinyal analog, efisiensi spektrum/ frekuensi yang menjadi meningkat, serta kemampuan optimasi sistemyang ditunjukkan dengan kemampuan kompresi dan coding data digital.
Tenaga yang diperlukan untuk sinyal sedikit sehingga dapat menghemat baterai ,sehingga handset dapat dipakai lebih lama dan ukuran baterai bisa lebih kecil.Kelemahan teknologi 2G terletak pada kecepatan transfer data yang masih rendah (kecepatan rendah – menengah). Tidak efisien untuk trafik rendah.Selain itu, jangkauan jaringan juga masih terbatas sehingga, sangat tergantungoleh adanya BTS (cell Tower). Contoh: GSM dan CDMA2000 1xRTT

1.)    2,5G
GPRS (General packet Radio Service) – 2,5G adalah terobosan atau inovasi dari teknologi jaringan 2G. GPRS adalah cikal bakal kemunculan 4G saat ini. Tercipta pada tahun 1997 GPRS dengan sigap menggantikan CSD yang boros, dengan GPRS semua menjadi lebih irit karena perhitungan bukan lagi permenit CSD tapi jadi perkilobyte. Fasilitas yang diberikan oleh GPRS antara lain e-mail, mms, browsing, dan  internet.
2.)    EDGE (Enhanced Data for Global Evolution) : teknologi perkembangan dari GSM, rata-rata memiliki kecepatan 3 kali dari kecepatan GPRS yaitu bisa mencapai 384kbps. Beberapa sumber menyebutkan bahwa EDGE ini termasuk ke dalam 2.75 G, sehingga ia adalah peralihan dari 2G ke 3G. Memilki fitur yang sama dengan GPRS menyediakan MMS, e-mail, dan browsing.

C.     3G (Generasi Ketiga)
Antara tahun 2001 sampai 2003, EVDO Rev 0 pada CDMA2000 dan UMTS pada GSM pertama yang merupakan cikal bakal dari 3G mulai diperkenalkan. Tapi ini bukan berarti GPRS telah mati. Justru saat muncul EDGE (Enhanced Data rates for GSM Evolution) ini diharapkan akan menjadi pengganti GPRS yang baik, karena tidak perlu meng upgrade hardware secara ekstrem dan tidak terlalu banyak mengeluarkan biaya.
UMTS (Universal Mobile Telecomunication Service) Sejarah dan perkembangan jaringan nirkabel mencatat bahwa UMTS sebagai generasi ke tiga dari teknologi 3G ,dengan kecepatan mencapai 480Kbps dengan fitur yang sama yaitu (MMS, e-mail, dan browsing) dan merupakan kelanjutan dari teknologi GSM/GPRS dimana perbedaan utamanya adalah kemampuan akses data yang lebih cepat. Kecepatan akses data dalam UMTS bisa mencapai 2Mbps (indoordan low range outdoor). Akan tetapi jika kita bandingkan dengan GPRS maka kecepatan datanya juga bisa mencapai 115 Kbps dimana untuk penggunaan akses internet sudah memadai. Salah satu contoh layanan yang paling terkenal dalam 3G adalah video call dimana gambar dari teman kita bicara dapat dilihat dari handphone 3G kita. Layanan lain adalah , video conferencevideo streaming, baik untuk Live TV maupun video portalVideo MailPC to Mobile, serta Internet Browsing.
1.)    3,5G
HSDPA (High Speed Downlink Packet Access) merupakan teknologi selanjutnya dari 3G. HSDPA sering disebut generasi 3,5G karena Teknologi ini masih berjalan dengan platform 3G. Secara teori kecepatan akses data HSDPA sama seperti UMTS 480Kbps, tapi pastinya data HSDPA lebih cepat. Menurut beberapa sumber kecepatan transfer data HSDPA mencapai 2mbps. Setelah beberapa tahun CDMA 2000 mengupgrade teknologi jaringan evdo mereka, EVDO rev A setara dengan 3,5G lebih cepat 10 kali lipat juga dari pada EVDO rev 0. HSDPA (High Speed Downlink Packet Access) merupakan perkembangan akses data selanjutnya dari 3G.

D.    4G (Generasi Keempat)
4G adalah singkatan dari istilah dalam bahasa Inggris: fourth-generation technology. Istilah ini umumnya digunakan mengacu kepada pengembangan teknologi telepon seluler. 4G merupakan pengembangan dari teknologi 3G. Nama resmi dari teknologi 4G ini menurut IEEE (Institute of Electrical and Electronics Engineers) adalah “3G and beyond”.Teknologi 4G adalah istilah serapan dari bahasa Inggris: fourth-generation technology. Istilah ini umumnya digunakan untuk menjelaskan pengembangan teknologi telepon seluler.
Sistem 4G akan dapat menyediakan solusi IP yang komprehensif dimana suara, data, dan arus multimedia dapat sampai kepada pengguna kapan saja dan dimana saja, pada rata-rata data lebih tinggi dari generasi sebelumnya. Belum ada definisi formal untuk 4G. Bagaimanapun, terdapat beberapa pendapat yang ditujukan untuk 4G, yakni: 4G akan merupakan sistem berbasis IP terintegrasi penuh. Ini akan dicapai setelah teknologi kabel dan nirkabel dapat dikonversikan dan mampu menghasilkan kecepatan 100Mb/detik dan 1Gb/detik baik dalam maupun luar ruang dengan kualitas premium dan keamanan tinggi. 4G akan menawarkan segala jenis layanan dengan harga yang terjangkau. Setiap handset 4G akan langsung mempunyai nomor IP v6 dilengkapi dengan kemampuan untuk berinteraksi internet telephony yang berbasis Session Initiation Protocol (SIP). Semua jenis radio transmisi seperti GSM, TDMA, EDGE, CDMA 2G, 2.5G akan dapat digunakan, dan dapat berintegrasi dengan mudah dengan radio yang di operasikan tanpa lisensi seperti IEEE 802.11 di frekuensi 2.4GHz & 5-5.8Ghz, bluetooth dan selular. Integrasi voice dan data dalam channel yang sama. Integrasi voice dan data aplikasi SIP-enabled.Teknologi 4G di IndonesiaSecara sederhana, dapat diartikan bahwa teknologi 1G adalah telepon analog / PSTN yang menggunakan seluler. Sementara teknologi 2G, 2.5G, dan 3G merupakan ISDN. Indonesia secara umum pada saat ini baru memasuki tahap 2.5G. Berkaitan dengan teknologi 4G, SIP adalah protokol inti dalam internet telephony yang merupakan evolusi terkini dari Voice over Internet Protocol maupun Telephony over Internet Protocol. Teknologi tersebut banyak di perdebatkan oleh operator, pemerintah dan DPR belakangan ini. Tidak lama lagi internet telephony akan menjadi tulang punggung utama infrastruktur telekomunikasi. Teknologi internet telephony memungkinkan pembangun infrastruktur telekomunikasi rakyat secara swadaya masyarakat (tanpa Bank Dunia, IMF maupun ADB) bahkan mungkin tanpa kontrol pemerintah sama sekali. Dengan teknologi SIP dalam 4G, nomor telepon PSTN hanyalah sebagian kecil dari identifikasi telepon. Bagian besarnya akan dilakukan menggunakan URL. Kita tidak lagi perlu bergantung pada nomor telepon yang dikendalikan oleh pemerintah untuk berkomunikasi via internet-telepon. Infrastruktr internet telephony memungkinkan kita untuk menyelenggarakan sendiri banyak hal tanpa tergantung lisensi pemerintah dan tidak melanggar hukum. Teknologi 4G juga akan menyebabkan kemunduran bagi teknologi Inernet Network (IN) yang saat ini merupakan infrastruktur telekomunikasi yang digunakan berbagai provider. Hal tersebut disebabkan terbukanya jalur arus bawah yang dapat didownload dan diakses gratis dari internet.
Salah satu istilah yang biasa digunakan untuk mendeskripsikan teknologi 4G adalah MAGIC :
:• M obile multimedia, penggunaan aplikasi bergerak di mana saja.
• A nytime anywhere, kapan saja dan dimana saja.
• G lobal mobility support, sangat mendukung kebebasan bergerak.
• I ntegrated wireless solution, solusi perangkat wireless terintegrasi.
• C ostumized personal service, layanan yang mampu mengekspresikan diri.

SUMBER :


Senin, 21 Maret 2016

Media Transmisi



Sejarah Perkembangan Jaringan Transmisi

Media Transmisi
Dalam abad-abad terakhir ini sejumlah penemuan telah memungkinkan untuk dibangunnya hubungan telekomunikasi dengan kapasitas yang selalu bertambah. Saluran telegrap permulaan merambat-kan sinyal yang kecepatannya sampai dengan 30 kata per menit atau sekitar 15 bit per detik. Beberapa kabel serat optik yang dipasang saat ini dalam jaringan trunk jarak jauh mempunyai kapasitas untuk membawa sinyal sampai dengan 2,4 Gbps. Kapasitas teoritis serat kaca setebal rambut ini adalah sedemikian sehingga hanya dengan menggunakan tiga serat, kapasitasnya sudah mencukupi untuk separuh pelanggan telepon di AS bercakap-cakap dengan separuh pelanggan lainnya pada saat yang sama.
Banyak sekali kabel serat optik dipasang saat ini, terutama pada jaringan jarak jauh dan antar kantor. Setelah sepuluh tahun mendatang kabel serat optik akan secara progresif dipasang sebagai loop lokal di beberapa wilayah. Na-mun pada saat yang sama sejumlah besar media transmisi yang beragam akan terus digunakan. Ini akan memerlukan waktu tertentu sebelum semua kabel koak-sial dan sistem kawat tembaga digantikan dengan serat optik itu. Kita membahas

SEJARAH
Kemampuan untuk mengkombinasikan beberapa channel menjadi satu sambun-gan fisik mulai beroperasi pada tahun 1847 dengan skema yang dibuat oleh Baudot yang memungkinkan enam pengguna bertransmisi secara keroyokan melalui sebuah saluran telegrap — suatu kemajuan dramatis yang mempertinggi kecepatan menjadi sekitar 90 bps.

Pada tahun 1876 Alexander Graham Bell mengucapkan kalimatnya untuk per-tama kalinya melalui hasil penemuannya, yaitu, telepon. Tahun-tahun berikutnya dibangunlah saluran telepon, papan sentral dan kemudian pertukaran otomatis.
"Loading" yang dibahas pada Bab diaplikasikan ke saluran telepon pada tahun 1899. Sebelumnya saluran komersial terpanjang membentang dari New York ke Chicago. Mulai tahun 1911 percakapan dari New York sampai Denver menjadi terwujud, yang mana jarak sejauh itu saat ini merupakan suatu pencapaian yang menakjubkan mengingat pada saat itu penguat (amplifier) belumlah ditemukan.
Pada tahun 1913, terjadi suatu kemajuan besar saat repeater tabung hampa udara mulai digunakan. Pelayanan dari pantai bagian barat ke pantai bagian ti-mur Amerika Serikat dengan menggunakan tube semacam itu mulai beroperasi pada tahun 1915.

Kemajuan elektronik berlanjut dengan cepat, dan pada tahun 1918 sistem carrier (pembawa) untuk pertama kalinya digunakan sehingga memungkinkan dua channel suara dikirimkan melalui pasangan kawat tung-gal. Jumlah channel suara yang dapat dikirimkan melalui kabel tunggal segera meningkat seiring dengan perjalanan tahun. kabel koaksial menggantikan ka¬bel sepasang kawat untuk sambungan berkapasitas tinggi, dan kini kabel ini membawa ribuan channel telepon.

Pada tahun 1897 Marconi mendirikan Wireless Telegraph and Signal Com¬pany. Pada tahun 1899 dia berhasil mengirimkan pesan radio menyeberangi Selat Inggris dan pada tahun 1901 menyeberangi Samudra Atlantik. Lodge mengem-bangkan sarana tuning radio. Telegraf radio berkembang cepat.

Pada tahun 1902 Fessenden mengembangkan suatu sistem untuk memodulasi frekuensi radio melalui suara manusia, tetapi telepon radio pada skala komersial masih menunggu kedatangan penguat dan modulator yang menggunakan tabung hampa udara. Stasiun radio komersial pertama didirikan pada tahun 1920 untuk menghubungkan dua jaringan telepon darat antara Pulau Santa Catalina di Lepas pantai California dengan daratan Amerika. Mulai tahun 1927 telepon di Eropa dan Amerika Serikat dihubungkan secara komersial.

Hubungan radio gelombang mikro (microwave) didirikan setelah perang du-nia dan kini telah menjadi tokoh utama pada sistem telepon. Tower-tower, baik besar dan kecil, dengan sejumlah antena gelombang mikro tersebar di kota-kota besar dan di seluruh penjuru negeri. Mata rantai antena gelombang mikro yang kini hampir semuanya digital dapat membawa sekitar 13.000 channel.

Dekade 1960-an memperkenalkan satelit, laser, dan waveguide berkecepatan tinggi. Sejak itulah serat optik menggantikan waveguide untuk trunk-trunk jarak jauh. Kapasitas saluran komunikasi jarak jauh meningkat dengan cepatnya. Ka-rena jumlah rangkaian yang dibawa oleh suatu saluran meningkat, maka biaya per rangkaian pun menurun. Sekarang tersedia sistem serat optik yang dapat mem¬bawa lebih dari satu juta rangkaian suara (melalui banyak serat dalam satu kabel).

Pada bab ini kita membahas berbagai tipe media transmisi fisik yang sedang digunakan. Pada bab-bab berikutnya kita menjabarkan secara lebih rinci menge-nai cara penggunaan tipe-tipe tersebut untuk semua pola kerja sinyal digital, yang meliputi suara, data, video, dan televisi.

FREKUENSI

Media telekomunikasi dapat digolongkan menurut frekuensi sinyal yang dikirim-kan melalui media itu. Sebagai contoh, saluran gelombang mikro (microwave) beroperasi pada frekuensi sangat tinggi (VHF, very high frequency), kabel koak-sial pada tingkat frekuensi yang lebih rendah, dan sepasang kawat beroperasi pada tingkat frekuensi yang lebih rendah lagi. Kita semua tidak asing dengan frekuensi radio domestik.
Studio pemancar FM berada pada gelombang antara 88 sampai dengan 108 MHz. Studio AM berpancar pada gelombang antara 500 sampai de¬ngan 1600 Hz. Frekuensi ini bersama-sama dengan frekuensi operasi media-me¬dia lainnya ditunjukkan pada Gambar 11.1. Ini adalah sebagian kecil dari keselu-ruhan spektrum electromagnet.
Apa yang akan menjadi perhatian khusus kita bukanlah frekuensi operasi absolut tetapi jangkauan frekuensi yang dapat dikirimkan melalui fasilitas itu.pada umumnya, kuantitas data atau jumlah informasi yang dapat ditransmisikan adalah sebanding dengan bandwidth (lebar gelombang) atau jangkauan frekuensi yang dapat dikirimkan. Pada Gam¬bar 11.1, sebagai contoh, jangkauan frekuensi yang ditunjukkan untuk radio gelom¬bang mikro (microwave) adalah jauh lebih besar daripada yang untuk pemancar FM. Yang pertama membentang dari sekitar 2000 sampai 12.000 MHz,

102 c 103 Frequency
Cycles per Second
(Hertz) 104 10s 10s 107 108 109 1010 10n
Band Designations: Very Low Frequency Low Frequency Medium Frequency High Frequency Very High Frequency Super High Frequency Ultra High Frequency
Band Number: 4 5 6 7 8 9 10 11
Metric Subdivision: Myriametric Waves Kilometric Waves Hectometric Waves Decametric Waves Metric Waves Decimetric Waves Centimetric Waves Millimetric Waves

Spektrum frekuensi frekuensi yang digunakan dalam telekomunikasi - sebagian kecil dari keseluruhan spektrum elektromagnet yang ditunjukkan pada Gambar 1.2. Catatan: Alokasi frekuensi radio untuk penggunaan yang berbeda adalah jauh lebih rumit daripada yang ada di diagram ini, yang sudah disederhanakan untuk menunjukkan kategori utama yang dibahas pada buku ini. Jangkauannya 10.000 MHz. Sedangkan yang kedua membentang antara 80 sam-pai 150 MHz, berjangkauan sekitar 70 MHz. Umumnya pasangan kawat (wire pairs) mentransmisikan frekuensi antara 200 sampai dengan 300 kHz. Dengan demikian, melalui gelombang mikro, seseorang dapat mentransmisikan jauh lebih banyak informasi daripada melalui frekuensi Pemancar FM dan jauh lebih banyak lagi bila dibandingkan dengan melalui wire pair.

MEDIA TRANSMISI NON-OPTIK

Sepasang Kawat-Telanjang (Open-wire pair)
Pada awal mula hampir semua sambungan telepon dibuat dari sarana sepasang kawat yang direritangkan di antara tiang-tiang telepon. Berpasang-pasang kawat yang diperlihatkan pada Gambar 11.2 direntangkan dari isolator pada persilangan tiang-tiang. Kawatnya terbuat dari tembaga, atau baja yang dilapisi tembaga — baja untuk kekuatannya, tembaga untuk konduktivitasnya. Pada frekuensi diatas 1000 Hz, sebagian besar arus mengalir di bagian "kulit luar" kawat, yaitu di lapisan tembaga. Kawat dalam setiap pasangan ini berdiameter sekitar 0,128 inci dan jaraknya sekitar 8 sampai 12 inci.

Sepasang kawat ini dapat merambatkan percakapan telepon jarak jauh tanpa memerlukan penguatan. Dengan kawat semacam itulah, sebagai contoh, orang New York dapat berbicara dengan orang Denver sebelum penguat yang terbuat dari tabung hampa udara diketemukan. Kini seringkali diperlukan untuk mengi-rimkan beberapa channel suara bersama-sama melalui sepasang kawat yang sama. Ini memerlukan frekuensi lebih tinggi, dan pada frekuensi yang lebih tinggi penurunan (attenution) akan lebih besar. Oleh karena itu dipasang lebih banyak penguat (amplifier) dalam jalur itu.
Wire pair (sepasang kawat) ini rentan terhadap crosstalk (kebocoran percaka¬pan). Kopling induktif atau elektromagnet akan menghasilkan interferensi, dan percakapan pada salah satu pasangan akan sayup-sayup terdengar oleh pasangan kawat di dekatnya. Penambahan jarak pemisahan antar masing-masing pasangan dan pemutaran periodik dari kawat ini mengurangi interferensi ini sampai ke tingkat dapat diabaikan. Kondisi cuaca mempengaruhi hilangnya attenuasi (penu¬runan) pada jalur open-wire ini. Kebocoran terjadi pada isolator bila basah. Resis-tansi kawat meningkat sejalan dengan temperaturnya, dan kondisi basah dan lembab meningkatkan penurunannya.
Media transmisi adalah media yang menghubungkan antara pengirim dan penerima informasi (data), karena jarak yang jauh, maka data terlebih dahulu diubah menjadi kode/isyarat, dan isyarat inilah yang akan dimanipulasi dengan berbagai macam cara untuk diubah kembali menjadi data.
Kegunaan Media Transmisi
Media transmisi digunakan pada beberapa peralatan elektronika untuk menghubungkan antara pengirim dan penerima supaya dapat melakukan pertukaran data. Beberapa alatelektronika, seperti teleponkomputertelevisi, dan radio membutuhkan media transmisi untuk dapat menerima data. Seperti pada pesawat telepon, media transmisi yang digunakan untuk menghubungkan dua buah telepon adalah kabel. Setiap peralatan elektronika memiliki media transmisi yang berbeda-beda dalam pengiriman datanya.
Karakteristik Media Transmisi
Karakteristik media transmisi ini bergantung pada:
·         Jenis alat elektronika
·         Data yang digunakan oleh alat elektronika tersebut
·         Tingkat keefektifan dalam pengiriman data
·         Ukuran data yang dikirimkan
Jenis Media Transmisi
1.     Guided Transmission Media
Guided transmission media atau media transmisi terpandu merupakan jaringan yang menggunakan sistem kabel.
a.)    Twisted Pair Cable

Twisted pair cable atau kabel pasangan berpilin terdiri dari dua buah konduktor yang digabungkan dengan tujuan untuk mengurangi atau meniadakan interferensi elektromagnetik dari luar seperti radiasi elektromagnetik dari kabel Unshielded Twisted Pair (UTP), dan crosstalk yang terjadi di antara kabel yang berdekatan.
Ada dua macam Twisted Pair Cable, yaitu :
-          Kabel STP (Shielded Twisted Pair) yang merupakan salah satu jenis kabel yang digunakan dalam jaringan komputer. Kabel ini berisi dua pasang kabel (empat kabel) yang setiap pasang dipilin. Kabel STP lebih tahan terhadap gangguan yang disebebkan posisi kabel yang tertekuk. Pada kabel STP attenuasi akan meningkat pada frekuensi tinggi sehingga menimbulkan crosstalk dan sinyal hidung.
-          Kabel UTP (Unshielded Twisted Pair) yang banyak digunakan dalam instalasi jaringan komputer. Kabel ini berisi empat pasang kabel yang tiap pasangnya dipilin (twisted). Kabel ini tidak dilengkapi dengan pelindung (unshilded). Kabel UTP mudah dipasang, ukurannya kecil, dan harganya lebih murah dibandingkan jenis media lainnya. Kabel UTP sangat rentan dengan efek interferensi elektris yang berasal dari media di sekelilingnya.
b.)   Coaxial Cable

Kabel koaksial adalah suatu jenis kabel yang menggunakan dua buah konduktor. Kabel ini banyak digunakan untuk mentransmisikan sinyal frekuensi tinggi mulai 300 kHz keatas. Karena kemampuannya dalam menyalurkan frekuensi tinggi tersebut, maka sistem transmisi dengan menggunakan kabel koaksial memiliki kapasitas kanal yang cukup besar. Ada beberapa jenis kabel koaksial, yaitu thick coaxial cab le (mempunyai diameter besar) dan thin coaxial cable (mempunyai diameter lebih kecil).
Keunggulan kabel koaksial adalah dapat digunakan untuk menyalurkan informasi sampai dengan 900 kanal telepon, dapat ditanam di dalam tanah sehingga biaya perawatan lebih rendah, karena menggunakan penutup isolasi maka kecil kemungkinan terjadi interferensi dengan sistem lain.
Kelemahan kabel koaksial adalah mempunyai redaman yang relatif besar sehingga untuk hubungan jarak jauh harus dipasang repeater-repeater, jika kabel dipasang diatas tanah, rawan terhadap gangguan-gangguan fisik yang dapat berakibat putusnya hubungan.
c.)     Fiber Optic / Kabel Kaca

Serat optik adalah saluran transmisi yang terbuat dari kaca atau plastik yang digunakan untuk mentransmisikan sinyal cahaya dari suatu tempat ke tempat lain. Berdasarkan mode transmisi yang digunakan serat optik terdiri atas Multimode Step Index, Multimode Graded Index, dan Singlemode Step Index.
Keuntungan serat optik adalah lebih murah, bentuknya lebih ramping, kapasitas transmisi yang lebih besar, sedikit sinyal yang hilang, data diubah menjadi sinyal cahaya sehingga lebih cepat, tenaga yang dibutuhkan sedikit, dan tidak mudah terbakar.
Kelemahan serat optik antara lain biaya yang mahal untuk peralatannya, memerlukan konversi data listrik ke cahaya dan sebaliknya yang rumit, memerlukan peralatan khusus dalam prosedur pemakaian dan pemasangannya, serta untuk perbaikan yang kompleks membutuhkan tenaga yang ahli di bidang ini.

Kecepatan Transmisi
Bit : Binary Digit
^  Dalam transmisi bit merupakan pulsa listrik negatif atau positip
^  Satuan kecepatan :
¨  Bps = byte per second, bps = bit per second
¨  Bps ≠ bps
^  Satuan data digital
¨  8 bit       = 1 byte
¨  1 byte   = 1 karakter
¨  1 KB       = 1024 byte
¨  1 MB      = 1024 KB
¨  1 TB        = 1024 GB

2.     Unguided Transmission Media

Unguided transmission media atau media transmisi tidak terpandu merupakan jaringan yang menggunakan sistem gelombang.
a.)    Gelombang mikro
Gelombang mikro (microwave) merupakan bentuk gelombang radio yang beroperasi pada frekuensi tinggi (dalam satuan gigahertz), yang meliputi kawasan UHF, SHF dan EHF. Gelombang mikro banyak digunakan pada sistem jaringan MAN, warnet dan penyedia layanan internet (ISP).
Keuntungan menggunakan gelombang mikro adalah akuisisi antar menara tidak begitu dibutuhkan, dapat membawa jumlah data yang besar, biaya murah karena setiap tower antena tidak memerlukan lahan yang luas, frekuensi tinggi atau gelombang pendek karena hanya membutuhkan antena yang kecil.
Kelemahan gelombang mikro adalah rentan terhadap cuaca seperti hujan dan mudah terpengaruh pesawat terbang yang melintas di atasnya.
b.)   Satelit
Satelit adalah media transmisi yang fungsi utamanya menerima sinyal dari stasiun bumi dan meneruskannya ke stasiun bumi lain. Satelit yang mengorbit pada ketinggian 36.000 km di atas bumi memiliki angular orbital velocity yang sama dengan orbital velocity bumi. Hal ini menyebabkan posisi satelit akan relatif stasioner terhadap bumi (geostationary), apabila satelit tersebut mengorbit di atas khatulistiwa. Pada prinsipnya, dengan menempatkan tiga buah satelit geostationary pada posisi yang tepat dapat menjangkau seluruh permukaan bumi.
Keuntungan satelit adalah lebih murah dibandingkan dengan menggelar kabel antar benua, dapat menjangkau permukaan bumi yang luas, termasuk daerah terpencil dengan populasi rendah, meningkatnya trafik telekomunikasi antar benua membuat sistem satelit cukup menarik secara komersial.
Kekurangannya satelit adalah keterbatasan teknologi untuk penggunaan antena satelit dengan ukuran yang besar, biaya investasi dan asuransi satelit yang masih mahal,atmospheric losses yang besar untuk frekuensi di atas 30 GHz membatasi penggunaan frequency carrier.
c.)    Inframerah
Inframerah biasa digunakan untuk komunikasi jarak dekat, dengan kecepatan 4 Mbps. Dalam penggunaannya untuk pengendalian jarak jauh, misalnya remote control pada televisi serta alat elektronik lainnya. Keuntungan inframerah adalah kebal terhadap interferensi radio dan elekromagnetik, inframerah mudah dibuat dan murah, instalasi mudah, mudah dipindah-pindah, keamanan lebih tinggi daripada gelombang radio. Kelemahan inframerah adalah jarak terbatas, tidak dapat menembus dinding, harus ada lintasan lurus dari pengirim dan penerima, tidak dapat digunakan di luar ruangan karena akan terganggu oleh cahaya matahari.

Cara Kerja Jaringan Tanpa Kabel
Jaringan wireless: jaringan yang mengkoneksikan dua komputer atau lebih menggunakan sinyal radio, cocok untuk berbagi-pakai file, printer, atau akses Internet.
· Berbagi sumber file dan memindah-mindahkannya tanpa menggunakan kabel.
· Mudah untuk di-setup dan handal sehingga cocok untuk pemakaian di kantor atau di rumah.
· Produk dari produsen yang berbeda kadang-kadang tidak kompatibel.
· Harganya lebih mahal dibanding menggunakan teknologi ethernet kabel biasa.
Bila Anda ingin mengkoneksikan dua komputer atau lebih di lokasi yang sukar atau tidak mungkin untuk memasang kabel jaringan, sebuah jaringan wireless (tanpa kabel) mungkin cocok untuk diterapkan. Setiap PC pada jaringan wireless dilengkapi dengan sebuah radio tranceiver, atau biasanya disebut adapter atau kartu wireless LAN, yang akan mengirim dan menerima sinyal radio dari dan ke PC lain dalam jaringan. Anda akan mendapatkan banyak adapter dengan konfigurasi internal dan eksternal, baik untuk PC desktop maupun notebook.
Mirip dengan jaringan Ethernet kabel, sebuah wireless LAN mengirim data dalam bentuk paket. Setiap adapter memiliki nomor ID yang permanen dan unik yang berfungsi sebagai sebuah alamat, dan tiap paket selain berisi data juga menyertakan alamat penerima dan pengirim paket tersebut. Sama dengan sebuah adapter Ethernet, sebuah kartu wireless LAN akan memeriksa kondisi jaringan sebelum mengirim paket ke dalamnya. Bila jaringan dalam keadaan kosong, maka paket langsung dikirimkan. Bila kartu mendeteksi adanya data lain yang sedang menggunakan frekuensi radio, maka ia akan menunggu sesaat kemudian memeriksanya kembali.
Wireless LAN biasanya menggunakan salah satu dari dua topologi–cara untuk mengatur sebuah jaringan. Pada topologi ad-hoc–biasa dikenal sebagai jaringan peer-to-peer–setiap PC dilengkapi dengan sebuah adapter wireless LAN yang mengirim dan menerima data ke dan dari PC lain yang dilengkapi dengan adapter yang sama, dalam radius 300 kaki (±100 meter). Untuk topologi infrastruktur, tiap PC mengirim dan menerima data dari sebuah titik akses, yang dipasang di dinding atau langit-langit berupa sebuah kotak kecil berantena. Saat titik akses menerima data, ia akan mengirimkan kembali sinyal radio tersebut (dengan jangkauan yang lebih jauh) ke PC yang berada di area cakupannya, atau dapat mentransfer data melalui jaringan Ethernet kabel. Titik akses pada sebuah jaringan infrastruktur memiliki area cakupan yang lebih besar, tetapi membutuhkan alat dengan harga yang lebih mahal.
Walau menggunakan prinsip kerja yang sama, kecepatan mengirim data dan frekuensi yang digunakan oleh wireless LAN berbeda berdasarkan jenis atau produk yang dibuat, tergantung pada standar yang mereka gunakan. Vendor-vendor wireless LAN biasanya menggunakan beberapa standar, termasuk IEEE 802.11, IEEE 802.11b, OpenAir, dan HomeRF. Sayangnya, standar-standar tersebut tidak saling kompatibel satu sama lain, dan Anda harus menggunakan jenis/produk yang sama untuk dapat membangun sebuah jaringan.
Semua standar tersebut menggunakan adapter menggunakan segmen kecil pada frekuensi radio 2,4-GHz, sehingga bandwith radio untuk mengirim data menjadi kecil. Tetapi adapter tersebut menggunakan dua protokol untuk meningkatkan efisiensi dan keamanan dalam pengiriman sinyal:
· Frequency hopping spread spectrum, dimana paket data dipecah dan dikirimkan menggunakan frekuensi yang berbeda-beda, satu pecahan bersisian dengan lainnya, sehingga seluruh data dikirim dan diterima oleh PC yang dituju. Kecepatan sinyal frekuensi ini sangat tinggi, serta dengan pemecahan paket data maka sistem ini memberikan keamanan yang dibutuhkan dalam satu jaringan, karena kebanyakan radio tranceiver biasa tidak dapat mengikutinya.
· Direct sequence spread spectrum, sebuah metode dimana sebuah frekuensi radio dibagi menjadi tiga bagian yang sama, dan menyebarkan seluruh paket melalui salah satu bagian frekuensi ini. Adapter direct sequence akan mengenkripsi dan mendekripsi data yang keluar-masuk, sehingga orang yang tidak memiliki otoritas hanya akan mendengar suara desisan saja bila mereka menangkap sinyal radio tersebut.
Vendor wireless LAN biasanya menyebutkan transfer rate maksimum pada adapter buatan mereka. Model yang menggunakan standar 802.11 dapat mentransfer data hingga 2 megabit per detik, baik dengan metode frequency hopping atau direct sequence. Adapter yang menggunakan standar OpenAir dapat mentransfer data hingga 1,6-mbps menggunakan frequency hopping. Dan standar terbaru, HomeRF dapat mengirim dan menerima data dengan kecepatan 1,6-mbps (dengan menggunakan metoda frekuensi hopping). Wireless LAN kecepatan tinggi menggunakan standar 802.11b–yang dikenal sebagai WiFi–mampu mengirim data hingga 11-mbps dengan protokol direct sequence.
Tanpa Kabel: Jaringan Di Masa Depan?
Wireless LAN mungkin tampaknya sangat layak untuk diterapkan dimana saja dan kapan saja. Tetapi harganya masih mahal, dan kinerjanya masih belum dapat diandalkan. Pada kebanyakan kantor, jaringannya menggunakan Ethernet kabel, karena sudah lama terpasang, dan harganya sangat murah. Untuk di rumah, orang dapat menggunakan jaringan kabel telepon untuk menyambungkan banyak PC dan dapat dipakai untuk berbagi-pakai akses Internet.
Wireless LAN harganya masih mahal. Pada tahun 1999, sebuah adapter harganya sekitar US$500, bandingkan dengan harga sebuah kartu Ethernet yang cuma US$20 atau kartu jaringan telepon seharga US$100. Perubahan mungkin akan tampak, saat Apple memperkenalkan sistem jaringan wireless AirPort untuk Macintosh, yang mampu memberikan troughput hingga 11-mbps dengan harga US$99 per node. Sejak itu, vendor lainnya berlomba-lomba menyediakan produk berharga murah tetapi berkinerja tinggi. Sebuah firma riset pasar Yankee Group memperkirakan bahwa wireless LAN akan mampu menembus pasar jaringan rumah pada tahun 2003.
Untuk  saat ini, Anda dapat membeli adapter wireless LAN internal (kartu PCI atau ISA), model eksternal USB, dan PC Card atau kartu CardBus untuk notebook. Versi SOHO (small office-home office) dari Proxim (www.proxim.com) dan WebGear (www.webgear.com) harganya US$70 sampai US$130 per adapter. Harga ini bergantung dari jenis standar teknologi yang digunakan pada adapter. Untuk kalangan industri, adapternya berharga US$500 hingga US$700 dengan tambahan kemampuan seperti roaming (kemampuan untuk menggunakan titik akses manapun pada jaringan).
Pemakai dapat menambah titik akses untuk memperluas jangkauan jaringan mereka atau membantu mengatur lalu lintas data yang lewat. Adapter untuk titik akses tersebut tersedia dari Apple (untuk komputer Macintosh), Lucent (www.lucent.com/pss/prodover/) dan Proxim, dengan harga US$300 hingga US$700. Sebuah titik akses dapat berfungsi sebagai sebuah bridge ke jaringan kabel yang ada.
Di antara standar yang ada, para analis menjagokan IEEE 802.11b. Dengan kecepatan transfer hingga 11-mbps, 802.11b dapat menyalurkan data empat kali lebih cepat dibanding yang lain, tetapi harganya tidak jauh berbeda. Sementara itu, baru-baru ini, HomeRF yang dibeking oleh perusahaan besar seperti Intel, Compaq, dan Motorola, mendapat pengakuan dari FCC (Federal Communication Commission) sebagai standar wireless LAN resmi di Amerika Serikat. Walau begitu beberapa analis meragukan HomeRF dapat menjadi standar yang diakui di seluruh dunia, karena 802.11b terlanjur telah diadopsi oleh banyak vendor untuk produk wireless LAN berkecepatan tinggi.

Sumber  :
-     http://lido-elka-65524.blogspot.co.id/2010/07/sejarah-perkembangan-jaringan-transmisi.html